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Abstract

Control of a robotic manipulator is subject to control and sensing errors. This is par-
ticularly troublesome in fine motion planning. A number of approaches have been
taken including propagation of numeric or symbolic uncertainties and the generation
of plans which use compliant motion to achieve goals in spite of uncertainties. These
approaches have generally sought to guarantee success and thus plan generation
costs are high. We present a unique approach to incrementally acquiring uncer-
tainty-tolerance in robotic manipulation plans through experience. During plan con-
struction and execution, no reasoning about uncertainty takes place. Consequently,
plan generation and execution is very fast. However, in response to failures, plans
are refined to increase their uncertainty-tolerance so as to reduce the future possibil-
ity of the encountered failure. The incremental refinement approach has several ad-
vantages over guaranteed plans. First, resulting plans are general and have explicit
applicability conditions. Second, plans achieve a savings because they do not explic-
itly consider uncertainties. Third, savings is obtained over the guaranteed case since
often only a subset of all uncertainties lead to failures in practice. Last, unguaranteed
but practical plans can be generated by the incremental approach when they lie out-
side the scope of the guaranteed planner. To demonstrate our approach we describe
an implemented system called GRASPER which learns to grasp novel objects given
only imprecise television camera input. No prior model of the objects is assumed,
nor are the objects required to satisfy apriori constraints on their shapes. Robustness
of the system's grasping improves with experience.
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1 1 Introduction

Dealing with uncertainty is an important problem in robotic planning. In executing

a plan on a manipulator both control and sensing errors occur in addition to errors

in modelling the environment. Although one could invest in mechanically better ro-

bots and higher resolution sensors, the incremental improvement diminishes as the

cost escalates.

Problems with uncertainties are particularly pronounced in fine motion planning

where small discrepancies in manipulator control or piece modelling can easily re-

sult in failures. Some of the first approaches to this problem involved the propagation

of error estimates throughout the steps of a task numerically [Lozano-Perez76, Tay-

lor76] and symbolically [Brooks82]. The error estimate could be used to make deci-

sions about what strategy to apply at different stages of the plan. Later, approaches

were introduced using preimages in configuration space [Erdmann84, Erdmann86,

Lozano-Perez84]. A preimage of a goal gives a set of configurations from which

compliant motion can be initiated and guaranteed to succeed despite control and

sensing uncertainties. Where the previous systems sought guaranteed plans for goal

achievement under specified uncertainty bounds, Donald's EDR system relaxes this

requirement permitting execution of unguaranteed plans which fail in recognizable

ways and constructing plans which succeed in spite of model error [Donald90].

When a fine motion plan has been constructed that takes advantage of compliant mo-

tion, results can be very good. For instance, experimental results obtained by

Gottschlich and Kak in parts mating operations under uncertainty are encouraging

[Gottschlich89]. Unfortunately, systems which represent and reason about uncer-

tainties explicitly to construct guaranteed plans or to guarantee that only recogniz-

able failure states occur, incur a high performance penalty in planning. For example,

Canny shows that to construct an r-step motion plan under uncertainty in an m-di-

mensional configuration space with n polynomial constraints defining the bounds of
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obstacles in the space takes an algorithm of complexity 220(r n m) [Canny89].1 Re-

suits like these have triggered much interest in reducing the complexity of such plan-

ning by approximating the real problem by simpler but still realistic ones.

A number of techniques have been introduced for improving the complexity of robot

planning. These include slicing configuration space (forbidding motion along cer-

tain dimensions) and simplifying the shapes of objects [Latombe9O]. Generally,

these techniques are conservative such that if the planner succeeds with the simpli-

fied model it is guaranteed to succeed with the real problem. Unfortunately, this rules

out many situations where fine control is necessary with cluttered spaces in the pres-

ence of uncertainty. A general robot manipulation system should be able to take ad-

vantage of different simplifications in different situations. For instance, approximat-

ing the robot gripper with a large rectangular prism might only be indicated when the

spacing between objects exceeds some threshold.

Another approach explored recently involves open-loop planning. If methods can

be found to predict how actions behave under uncertainty, less sensing is required.

The need to make decisions based on sensor readings at execution time is a signifi-

cant source of complexity [Canny89]. Mason gives a detailed analysis of pushing

and grasping techniques which lead to success in the presence of uncertainty without

requiring sensing [Mason85, Mason86].

Yet another approach to improving robot planning efficiency is via machine learning.

Segre explores the use of explanation-based learning (EBL) [DeJong86,

Mitchell86] for automatic synthesis of manipulation plans [Segre85, Segre88]. Be-

cause inference rules and operators are used to construct a proof of why the plan

should succeed, a set of generalized conditions can be produced which describe the

applicability of the plan. Consequently, the plan can be saved and used later for simi-

lar tasks. Segre 's ARMs system demonstrated the viability of the approach for learn-

1. Canny points out that this extreme complexity is due to the need to use sensor readings to make
decisions at execution time. A sensorless plan could be nun in singly exlponential tine [Canny891.
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ing generalized robot plans. It did not, however, deal with the problems of uncertain-

ty which our work addresses.

Simple machine learning techniques have been applied to the problem of uncertainty

in robotics planning. Dufay and LaTombe employed an inductive approach which

uses a production rule system to drive execution [Dufay84]. Multiple traces are then

combined to produce the plan. This can be viewed as a system which uses experience

with the world to gain in efficiency, including inducing loops and limiting branch

points to those possibilities observed in the traces. The uncertainty-tolerance of

plans is limited to those cases represented by the traces but new cases can be added

as generated by the production system when the plan fails. The generated plans ex-

plicitly consider uncertainties and use sensing operations during execution. Where

Dufay and LaTombe's approach is limited to the set of operators described in the pro-

duction rules, our approach can learn to adjust parameters of those operators. Their

plans apply to a specific task and context where our planner derives general precondi-

tions for plan application during plan construction. For example, without these ap-

plicability conditions for a plan, Dufay and LaTombe's system can induce loops

I which don't terminate in certain cases [Dufay84].

Another approach to learning robot plans in the face of uncertainty is Christiansen

and Mason's approach [Christiansen90a]. Here, actions are tried and theireffects ob-

served over many trials compiling a set of conditional probabilities. This informa-I tion can then be used in constructing unguaranteed open-loop plans by plotting a

course of maximum probability of goal achievement. Variations on this technique

are explored in [Christiansen9Ob]. This approach uses no explicit inference rules or

operators about the way the world behaves but makes use of probabilities tabulated

over a large number of trials. The world must be discretized into a relatively small

number of states to make such a tabulation practical. Because there is no notion of

what may effect these probabilities, in a slightly different context, the experiments

would have to be performed again.
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In this paper we present a general technique for introducing uncertainty- tolerance

into robot manipulation plans based on experienced failures with those plans. Uncer-

tainties are only reasoned about in response to failures, not when the plan is originally

built and executed. This makes plan construction and execution very fast. A tradeoff

exists between the cost of generating robot plans and the chance of their failure. Re-

finement occurs when plan operators violate expected sensor conditions during ex-

ecution. The refinement process increases the uncertainty-tolerance of specific por-

tions of the plan so as to decrease the likelihood of a similar failure.

The incremental refinement technique to planning under uncertainty employs ma-

chine learning techniques and offers several advantages over guaranteed plans:

1) generality The technique learns general manipulation plans from specific

problems. Consequently, planning time can be saved if an applicable plan has al-

ready been generated and can be instantiated for the task at hand. For instance, a gen-

eral plan might embody a technique for grasping an object when two near-parallel

faces are not occluded by nearby objects. The system must, however, guarantee the

conditions for that plan hold. One of these involves checking that no nearby objects

occlude the grasping faces. Not only do such general plans save planning time if for-

merly learned plans can be applied to new situations, but the presence of general con-

ditions for plans is particularly powerful. Suppose a motion planning ta.sk involves

moving first through a relatively sparse part of the workspace and then through a

more cluttered part of the workspace. It becomes possible to derive an operator se-

quence first using one plan that is inexpensive and applies in sparsely occupied

spaces followed by another more expensive plan which applies in cluttered spaces.

2) complexity In constructing a guaranteed plan under uncertainty all possible

potential errors and their interactions must be considered. Given some distribution

of tasks a manipulator must perform, not all those errors and interactions are likely

to arise. Consequently, an incremental learning approach can adapt plans to the level

of uncertainty-tolerance required without expending the additional effort to guaran-

tee success in unlikely situations. Furthermore, uncertainty-tolerance gets built into



the plan implicitly such that no explicit reasoning about uncertainty takes place when

the plan is constructed and executed, only when it is refined.

3) scope Guaranteed planning approaches and those which seek to guaran-

tee recognizable failures states can never be applied when such guarantees cannot

be proven. The incremental approach has the potential to learn techniques which

succeed in practice with a particular set of tasks but which can't be guaranteed.

It is worthwhile to note that any incremental approach which relies on failures makes

the assumption that some amount of failures is tolerable. While the rate of failures

tends to decrease as experience is gained, one cannot guarantee that future failures

are not possible without constructing a guaranteed plan. 2 There are certainly do-

mains where guaranteed plans are much more crucial and worth the additional effort

to generate them. One would not want a remote manipulator learning from failure

in moving bottles of nitro-glycerin.

In the next sections, we introduce data approximations which are explicit representa-

tions for uncertain and/or simplified sets of data, plan parameters which can be tuned

to affect uncertainty-tolerance of a plan, and the plan refinement procedure. A de-

tailed robotic grasping example is then presented from an implemented system.

2 Data Approximations

Data approximations are representations for approximate continuously valued data

about the state of the world. They can either be external or internal. External data

approximations are used to represent the uncertainty of data in the world. Internal

data approximations are used to simplify complex sets of data to make planning more

tractable. First, let us consider external data approximations.

2.1 External Data Approximations

An external data approximation involves a set of quantities for which the system is

given approximate values typically via imperfect sensors. Let QE be a vector

2. Strictly a guaranteed plan is only guaranteed under fixed assumptions about the magnitude of
the uncertainties.
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fql, q2, q3, .... q,) of quantity variables. Every qi exists along a continuous dimen-

sion D(qi) and has a measured value knowable to the system denoted Mv(qi) • There

is also an actual world value not knowable to the system denoted Av(qi). For a sen-

sor to yield a valid approximation we require that the conditional probability

P( Md(qi) = ai I Av(qi) = Pi ) is monotonic in I ri - ai . Given the actual value ri

for a sensed quantity (Av(qi) = ri) , the likelihood of measuring value ml is greater

than measuring value m2 in just those cases that ml is closer to ri than is m2. More

precisely:

P(Mv(qi) = mIjAv(qi) = ri) > P(Mv(qi) = m2j0v(qi) = ri) iff IMI - ri < 1m2 - ril (2.1)

In the case of external data approximations, the values {Mv(qi) Ji = 1, 2,..., nj are

the best information the system has about the quantity variables . The only possible

way to improve this information would be to interact with the world. For purposes

of planning with the data represented by the approximations, the system behaves as

if QE = {Mv(qi) Ji = 1, 2,..., nj. The qualitative definition of a data approximation

is never employed during planning, only when analyzing failures.

2.2 Internal Data Approximations

With an internal data approximation, the system chooses the values for the quantity

variables QJ with a data approximation procedure. Using a simplified intenal de-

scription of the real world typically results in more efficient, though less accurate,

planning. Internal data approximations can be adjusted through the system's reason-

ing alone. By expending more or less resources reasoning about a plan the system

may bias its planning towards accuracy or towards efficiency. The costs associated

with planning failures, execution failures, and other features of the task domain may

be thought of as specifying a utility function.3 For a given problem distribution in

a domain there is an optimal faithfulness of representation that maximizes the sys-

3. For a model of the different aspects of utility for plan to be executed in uncertain, complex
domains see IBennett891.
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tern's performance according to the utility costs. One can think of internal data ap-

proximations as being like external data approximations except that the ideal un-

knowable value of the variables represents the optimal setting, while the actual

represented value for a quantity corresponds to the value chosen by the system in an

attempt to maximize utility.

3 Plan Parameters

Plans employ continuous numeric parameters which can be tuned to affect uncer-

tainty-tolerance. It is important that these parameters depend on the situation to

which the plan is applied (the plan's context). A simple example is a parameter that

specifies the height which a manipulator must be above the workspace to safely navi-

gate without collisions. The possible settings for this parameter are a function of the

highest object in the workspace. Therefore, it depends on context. This means a gen-

eralized plan must choose its parameter values at the time the plan is applied.

Let Qp be the set of plan parameters and Ap be the set of their respective values.

Every qi E Qp is defined along a continuous dimension D(qi). Let there be a low

bound Li0ow(D(qi), C) and a high bound Lhigh(D(qi), C) on the values which qi may

assume along dimension D(qi) in context C. A context is a partial world state speci-

fication. Figure 1 gives a pictorial representation for the dimension D(qi). The

L ,,(D(qi). C) q, = ai Lhih(D(q), C)
lower limit plan parameter's current value tipper limit

Figure 1. A Graphic Representation of Dimension D(q)

plan's parameter values Ap are in general dependent on context. The system

chooses Ap based on a set of preferences P(qi, C) for each qi in context C.

A preference p E P(qi, C) is a 3-tuple < Vlo,,(C) , Vhigh(C), r > where Vlo,11(C) and

Vhigh(C) form an interval dependent on context, and

r E { increasing, decreasing, constant) is a relation describing the behavior of a
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quality function FQ4I,C in that interval. The greater the value of the quality fnction

FQq,,C(X) , the better the value forX as the parameter setting in that context. Addi-

tionally, a set of preferences are consistent if for the current context their intervals

lie within the bounds (LoW(D(qi), C) <- Vto.w(C) <- Vhigh(C) < Lhigh(D(qi), C) )

and no two overlap. Figure 2 shows two consistent preferences and one possible

one possible FQ4 .c

L,,(D(qi), C) VI".I(C) Vhigh(C) - Vow. 2(C) Vhih2(C )  Lhih(D(q), Q

lower limit upper limit

P(qi, C) = {(V',.1(C). Vh,,h.,(C), increasing), (V, o 2(C), Vh,,. 2(C),decreasing)}

Figure 2. A Graphic Representation Of Two Consistent Preferences and a Quality

Function which Satisfies Them

quality function which satisfies them. We assume limited interactions between pa-

rameters in that the preferences must maintain their relative ordering under any pos-

sible valuation of the other plan parameters.

When a general plan is applied in a specific situation (context), the current quality

function for each parameter determines its value. A value for the parameter is chosen

so as to maximize its quality value. The choice of parameter value may be con-

strained in a given context. For instance, in grasping a polygonal object, one parame-

ter involves the angle between grasping faces. Since the object has only a discrete

number of faces, there are only a discrete numberof choices for the parameter value.

The choice giving the best quality value is chosen.

4 Refining Failing Plans for Increased Uncertainty-Tolerance

When constructing a plan, any actions to be carried out in the plan must include a

specification of sensor readings expected during execution of the action. The proof

which justifies why a plan will succeed (also refened to as the explanation) in the

-8-



system's model of the world also justifies the expected sensor readings. Failures are

thus defined by expectation violations. These occur when the supporting proof for

an expectation is valid in the model but is contradicted by real-world experience.

That difference triggers the first phase of failure recovery: generating a proof of how

plan parameters can be tuned to reduce the chance of the failure in the future.

In order to diminish the chance of uncertainty-related failures, it is necessary to de-

cide which plan parameters to tune and how to tune them. In our model, failures can

always be attributed to poor data approximations. In order to devise a strategy for

tuning parameters so as to decrease the likelihood of a failure, it is necessary to reason

about the relationships which exist between data approximate quantities, the failing

expectations, and tunable plan parameters.

We employ a qualitative model of the relationship between continuous quantities.

It is important to preserve generality in learning preferences for parameters. Other-

wise, we could not transfer experience gained about parameter settings to similar sit-

uations. A qualitative model allows us to reason about the important relationships

between quantities without tieing us to the specific values for the current situation.

Let Q+(a, b) signify that the magnitude of quantity b positively influences the mag-

nitude of quantity a. Similarly, Q_(a, b) means the magnitude of quantity b inverse-

ly influences the magnitude of quantity a. That is, if a = fib, cl, c2 . c,) the mini-

mum we must know to create such a relation (without ambiguity) is the sign of Of.fb

If -f > 0 then Q+(a, b) holds. If -f < 0 then Q_(a, b) holds.4
b Ob

Quantitative predicates employed by the system have one of two basic intents. Either

they are calculation predicates, whose purpose is to compute some value (e.g. a pred-

icate for subtraction), or they are test predicates, which are designed to fail for certain

sets of inputs (e.g. a predicate for performing a less-than comparison). There is no

4. Q+, Q_ and the associated inference rulcs about increasing and decreasing quantities are
used as in (Jualilative process theory [Forbusg4l.
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way to vary the probability of success of a calculation predicate since they always

succeed. A test predicate's probability of success is sensitive to the probability distri-

bution of its argument quantities. In the diagram below, the less-than test on the right

(<a b)? probability (< a b)?

has a higher probability of succeeding given the illustrated probability distributions

for its arguments than the one on the left. While probability distributions are difficult

to define and work with, recall the simpler qualitative view of the probability distri-

bution defined for data approximations in section 2.1: probability density decreases

monotonically as one moves either higher or lower away from the central value.

Therefore, if we can tune one of the arguments to a test predicate we can affect its

chance of success.

Let DA(q) signify that q is a data approximate quantity. Now let us introduce the no-

tation PQ+(p, q) to express that the magnitude of the quantity q directly influences

the magnitude of the probability of success of test predicate p. Similarly, PQ_(p, q)

indicates that the magnitude of quantity q negatively influences the magnitude of the

probability of success of test predicate p. This provides a mechanism for connecting

the probability of a predicate being satisfied with the magnitude of a quantity. The

inference rule which follows is one of several which follow from our definition for

data approximations: PQ-(a < b, a) - DA(q), Q+(b, q), -, Q+( b, a). 5

The rule states: if q is a data approximate quantity and hence uncertain and directly

influences the magnitude of a quantity b, the likelihood of a<b succeeding is inverse-I6ly proportional to the magnitude of a provided a does not directly influence b.6 Let

PP(q) indicate that the quantity q is a plan parameter and hence is tunable. Let

5. Inference rules here will be shown in the fomi of Horn clauses with theirconsequent at the left
and a list of the conjunctive antecedents on the right.

6. This nile is stronger than it need be but otherwise rates of change would also have to be consid-
ered. We may relax this in a later implementation.
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I PSt (p) signify that the probability of success of predicatep is increasing. Let Qt(q)

signify that quantity q is increasing. Therefore we could use the following rules to

I increase the probability of a predicate p give than q is a plan parameter:

PSt(p) -= PQ+(p, q), Qt(q). and Qt(q) <- PP(q).

I The second rule above asserts that we can increase plan parameters to achieve goals

(because they .are tunable).

It must also be possible to propagate the qualitative probabilities of predicates. Let

ANT(ppP2 ) indicate thatp 2 is an antecedent of an inference rule forwhichp, is a con-

sequent. One sound rule for propagation of qualitative probabilities across rules can

* then be expressed:

PQ+(p1, q) 4= ANT(pl,p 2), PQ+(p2, q),Vx[[ANT(pl,x) A x ; P2] =0 -PQ_(x, q)] (2.2)

3 The general rules required to construct a qualitative tuning proof fall into four cate-

gories:

general qualitative inference rules - inference rules necessary to reason about

increasing and decreasing quantities

Example: Qt(x) 4- Q+(x,y), Qt(y).

qualitative predicate definitions - rules providing qualitative definitions for sys-
tem predicates relating quantities

Example:II
Q+(x,y) =Tx=y+z]. because (x =fly)) A (- = 1 )

approximation definition rules - rules defining the behavior of test predicates
using data-approximate quantities

Example: PQ+(a < b, b) 4= DA(q), Q+(a, q), -' Q+(a, b).
qualitative probability rules - rules about the propagation of qualitative proba-
bilities (Example: Rule 2.2 above)

The qualitative tuning explanation is a sound proof of how to positively influence

the probability of success of the predicate which supported the failing expectations.

The procedure for constructing the tuning proof and tuning the plan parameters as

a result is as follows:

1 -11-
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1) Compute the set P of generalized preconditions and effects for the plan justifi-
cation structure7

2) Take.all generalized variables which are quantitative arguments to every predi-
I cate p E P as quantity variables for the qualitative reasoning process.

3) Find all qualitative influences among these quantity variables. This is possible
since, if two plan quantities are related, we know the exact functional relationship
(in the model).

4) Construct a proof based on the qualitative inference rules discussed above for
how to unambiguously qualitatively increase the probability of success of the
predicate supporting the expectations to the failed action.

5) Collect the set of quantity increases and decreases justified by the fact that plan
parameters PP(q) are tunable. This amounts to finding applications of the rules
Qt(q) 4= PP(q) and Q4(q) -= PP(q) in the proof.

6) For each of the tunable plan parameters in the set collected above, add a new
preference to the set of preferences for that parameter. This preference will speci-
fy as one of it bounds a general expression for the point at which the failure oc-
curred and as its relation increasing or decreasing as given in step 5. The other
bound will be realized in conjunction with the neighboring preferences.

Next, we introduce a fully implemented system and demonstrate the algorithm.

5 The GRASPER System .........

Figure 3 shows the laboratory setup. 'i<&

The cun'ent implementation of the ar- ...M

chitecture is called GRASPER and is 'ffi i

written in Common Lisp running on an

IBM RT125. GRASPER is interfaced

with a frame grabber connected to a

camera mounted over the workspace.

The camera produces bitmaps from Figure 3. GRASPER Experimental Setup

which object contours are extracted by the system. The system also controls an RTX

scara-type robotic manipulator. The RTX has encoders on all of its joint motors and

the capability to control many parameters of the motor controllers including motor

current. This gives the system a rudimentary capability of detecting collisions with

7. This is accomplished through application of the EGGS IMooney86] or EBG [Mitchell86l expla-
nation-based generalization algorithms.
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the RTX gripper.8 This type of sensing gives feedback during execution of a plan

when the camera's view of the workspace would otherwise be obscured.

Our current goal for the GRASPER system applied to grasping is to successfully

grasp the plastic pieces from puzzles designed for young children. Since the pieces

are laminar, an overhead camera is used to sense piece contours. These pieces have

interesting shapes and are large enough, yet challenging, to grasp. The goal is to

demonstrate improving performance at the grasping task over time in response to

failures. Some of the failures the current implementation learns to overcome, when

using isolated grasp targets, include learning to open wider to avoid stubbing the fin-

gers on an objects, and learning to prefer more parallel grasping faces to prevent un-

stable grasps. We are also exploring grasping in cluttered workspaces where trade-

offs exist between plan parameters.

Figure 4 shows part of the system's status display during a grasping task. First, the
ViUid DtK pIO Ul-o : 380 Appo f-rta d ObJ.t

IXI
J-

Figure 4. Portion of System Status Display During Grasp of Object4543
system uses the camera to acquire contour information about objects in the work-

space. These contours are shown on the left in the figure. Next, the contours are ap-

proximated with n-gons (internal data approximations) which result in (n2-n)/2 pos-

sible unique grasping face pairs. These approximated object contours appear on the

right in the Figure 4. The algorithm chooses the value of n such that an approxima-

8. A wrist force sensor would be more desirable. The method currently used involves applying
enough current to the motor to overcome friction of the arm mechanism and interpreting non--chang-I ing joint encoders as evidence of a contact.
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tion to the object is possible within a certain error threshold. The data-approximated

object representations as well as the current information about the state of the robot

manipulator are entered into the system's model of the initial situation. The target

object is then selected and an explanation is generated for how to achieve a grasp of

the target. Figure 5 highlights the selected Light line segments showdata approximation of contour
target object. The light lines indicate the data d x tour

approximation to the object contour while

the heavy outline shows the actual sensed planned finger

object contour points. The arrows indicate are actual posions

the positions of the leading edges of the fin- object con-
tour points

I gers for the grasp position given by the pro- Figure 5. Grasp Target and
duced explanation. The proof tree for Planned Finger Positions

achieving grasp-object involves a total of about 300 nodes with a maximum depth

of 10 levels.

I Parameters are implemented by inference rules which choose their value dependent

on the situation in which they are applied. When new preferences are added for a

parameter, the associated rules are updated so as to choose potential maxima of the

new quality function. Generalized plans refer to the consequents of the rules which

choose parameter values. In this case, initially there were no preferences for the

plan's opening width parameter other than it be a legal value between the width of

the target object and the minimum of the maximum gripper opening and the distance

to the nearest object. One of the initial rules for the opening width parameter is shown

in Figure 6. This rule pertains to the case where the gripper is currently open less

than the minimum opening to satisfy the surround goal in the plan. It then chooses

the minimum opening which satisfies the goal because this is the closest potential

maxima of the (initially flat) quality function. The rule therefore affects the separa-

tion of the arrows shown in Figure 5. After the explanation was generated, and its

associated operator sequence executed, the monitored action shown in Figure 7 en-

counters a violation of the expected sensor readings.
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INTRA-RULE: R4513 -- one of three rules which are initially defined by
FORM: the opening width rle approximation

(CHOSEN-OPENING-WIDTH ?GRIPPER ?X ?Y ?ANGLE ?OBJECT ?RETURN)
ANTS: find minimum required

(GRIPPER-OPENING ?GRIPPER ?LOP45 10) opening so fingers don't collide with
(GRIPPER-PERP-WIDTH ?GRIPPER ?SPAN) *- object in approximate model
(MIN-SPAN-FOR-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?LEFT ?RIGHT)
(SUM ?LEFT ?RIGHT ?RETURN)
(MAX-GRIPPER-OPENING ?GRIPPER ?MAX-OPEN)
(<= ?RETURN ?MAX-OPEN) - can't achieve it even in approximate model if too
I wide for gripper
(< ?LOP4510 ?RETURN)

PARAMETER: CHOSEN-OPENING-WIDTH--- pointer to the parameter this nile isassociated with

Figure 6. One of the Initial Parameter Rules For Opening Width

(MONITOR (MOVE-ZED ?GRIPPER 199764 DOWN 5 64 20 POSITION) .- move down
(AND (POSITION ZED ?ZPOS199309) (FORCE ZED ?ZFOR 1993 10)
(< ?ZFOR199310 30)) ----- _force position to be recorded and all sensed
(POSITION ZED ?LEVEL 199311) forces on this joint must be less than 30 units
NIL ?DOC199312 /
(NO-GRIPPER-COL SION-OBWCT ?GRIPPER 199764 ?X199501 ?Y199502
?ANGLE 199503 TH 199504 ?OMQ3Z ,9756))

terminate when position is 0 (at the table) justification for sensor expectations (variables
bound by plan preconditions)

Figure 7. The Failing Monitored Action

The original explanation for the no-gripper-collision-object goal indicated in the

above monitored action is now suspect due to the violated expectations. A sketch

of the specific explanation is shown in Figure 8. This explanation for why no external

force should have been sensed during the downward move of the gripper is the start-

ing point for developing the qualitative tuning explanation. Data approximate quan-

tities and tunable parameters employed in the plan support proof are identified and

asserted as such. A proof is then constructed for increasing the probability of success

of the no-gripper-collision-object goal. Figure 9 shows the qualitative explanation

for how opening the gripper (increasing the opening-width tunable parameter) posi-

tively influences the probability that there will be no collision between the first grip-

per and the object. The topmost left-hand subtree esutblishes that decreasing the

quantity TEST492 can positively influence the probability of success of the the prob-

ability of the no-gripper-collision predicate. This is because decreasing the quantity

TEST492 can increase the probability of the predicate (<= TEST492 MIN490)
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(NO-GRIPPER-COLLISION-OBJECT GRIPPER 1 289.62 267.53 -12.70 38.89 OBJECT4543

(LEFT-FINGER-OF GRIPPERI FINGERI)

NON-INTERSECTING-GRIPPER-FINGER-OBJECT GRIPPER1 FINGERI 289.62 267.53 -12.70 38.89
~OBJECT4543)

Subprooffor translating finger to appropriate opening width (6facts, 8 built-ins)

Subprooffor counter-rotating object center for clipping against finger (8 built-ins)

Subprooffor calculating extents and checking for overlap (7 built-ins)

(RGIlT-FINGER-OF GRIPPER1 FINGER2)

NON-INTERSECTING-GRIPPER-FINGER-OBJECT GRIPPER 1 FINGER2 289.62 267.53 -12.70 38.89
OBJECT4543)

Subprooffor translating finger to appropriate opening width (6facts, 8 built-ins)

SHARED Subprooffor counter-rotating object center for clipping against finger
(8 built-ins)
Subprooffor calculating extents and checking for overlap (7 built-ins)

Figure 8. Explanation Specific to Failure

(PQ- NGC TEST492) (DECREASE TEST492)

(ANTECEDENT-OF NGC (<- TE5T492 M1490))A
I Subproof showing that for all (Q- TEST492 WIDTH504)

(PQ- (<= TEST492 MIN490) TEST492) antecedents ANT of NGC that T
(NOT (PQ+ ANT TEST492)) /

(APPROX-QUANITY OBX5I (TUNING-QUANTITY WIDTH504 INCREASING)
/--(Q+ MN490 01I

(NOT (Q+ MIN49(, TEST492)
(QRELATION (POSITION OBJECT505 OBX511 OBY512))

(DATA-APPROXIMATION (POSITION OBJECT505 OBX511 OBY512) OBX5 11)
r---------------------------------------------------------
I Where NGC represents the failing predicate:

(NO-GRIPPER-COLLISION-OBJECT GRIPPER499 X501 Y502 ANGLE503 WIDTH504 I
LOJECT05_

Figure 9. A Qualitative Tuning Explanation

which is an antecedent of a rule supporting the no-gripper-collision predicate and

all of the other antecedents to that rule can be shown as non-decreasing with respect

to decreasing TEST492. The probability of success of the predicate (<= TEST492

MIN490) increases when TEST492 is decreased because MIN490 is influenced by

a data approximate quantity. The right subtree of the proof establishes that the quan-

tity TEST492 can be decreased because it is influenced inversely by a tunable param-
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eter WIDTH504 which can be increased. The parameter WIDTH504 is the opening

width parameter for the gripper.

The qualitative tuning explanation indicates that the chosen-opening-width param-
eter should be tuned. Namely, that an increasing preference be posted at the mini-

I mum opening width, which was chosen in the failure. Figure 10 illustrates the shape
Chosen-Opening-Width (Initial) Chosen-Opening-Width (After Tuning)

quality function - -- i

_ width of target object - I--' J postedpreference:

min(distance to nearest object, prefers greater min(distance to nearest object,
max-opening-width) than target object max-opening-width)

Figure 10. The Chosen-Opening-Width Parameter Quality Function After
Learning New Preference

of the chosen-opening-width parameter's quality function before (left) and after
(light) tuning has occurred. After parameter tuning, the rules associated with param-

eter are updated. Afterwards, the rule associated with this parameter reads as shown

in Figure 11. This rule prefers selection of the peak of the newly re-calculated quality

INTRA-RULE: R4611
FORM:

(CHOSEN-OPENING-WIDTH ?GRIPPER ?X ?Y ?ANGLE ?OBJECT ?RETURN)
ANTS:

(GRIPPER-PERP-WIDTH ?GRIPPER ?SPAN)
(DISTANCE-TO-CLOSEST-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?RADI US)
(GRIPPER-FINGER-PARALLEL-WIDTH ?GRIPPER '?PSPAN)
(DIF ?RADIUS ?PSPAN ?NRADIUS)
(MAX-GRIPPER-OPENING ?GRIPPER ?MAX-OPEN)
(MIN ?NRADIUS ?MAX-OPEN ?RETURN)
(MIN-SPAN-FOR-OBJECT ?OBJECT ?X ?Y ?ANGLE ?SPAN ?LEFT ?RIGHT)
(SUM ?LEFT ?RIGHT ?MIN)
(<= ?MIN ?RETURN)

CONS:
PARAMETER: CHOSEN-OPENING-WIDTH

Figure 11. Rule Supporting Opening-Width Parameter After TuningI function which corresponds to opening as wide as the current situation permits.

When the new more uncertainty-tolerant plan is applied, the resulting gripper finger

I positions are as illustrated in Figure 12 and the grasp succeeds. This is only the first

tuning of the opening width parameter. The system will likely discover another po-I tential problem: opening too wide is not tolerant of uncertainties with respect to

-17-



nearby objects. The process continues with this Light line segnints show

and other parameters to be tuned. data approximation of contour

6 Conclusions
Arrows illus-

To construct manipulation plans for use in the trate planned
Dark 1 1finger positions

real world requires one to manage a set of trade- posiion

offs. One important tradeoff exists between the are actual object contour
points

tractability of generating the plans and the extent Figure 12. A Successful Wide Grasp

to which success can be guaranteed. This tradeoff is particularly pronounced in deal-

ing with uncertainty where guaranteed plans become much more expensive. The in-

cremental plan refinement approach offers a mechanism for managing the tradeoff.

Our approach makes use of explicit representations of inference rules and operators

for the task to generate and refine general plans which include explicit applicability

conditions. Savings is gained because uncertainty-tolerance of plans improves

through refinement without the need to reason about uncertainties during plan appli-

cation.

We are currently pursuing extensions to this work in several areas. One of these areas

involves developing an incremental technique for learning tradeoffs which may exist

among plan parameters. For instance, in grasping an object in a cluttered workspace

a tradeoff exists between how wide the gripper can be opened to surround an object

and which faces were selected for the grasp (because of the relationships of nearby

objects). Another area of work involves an empirical comparison of the numeric pro-

babilistic approach to stochastic actions [Christiansen90a] with an approach utiliz-

ing a simple explicit domain theory in conjunction with the approach described here.
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